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ABSTRACT

Recently, it was reported that an electrostrictive graft elastomer exhibits large electric field-induced strain (4%).  Combined
with its high mechanical modulus, the elastomer can offer very promising electromechanical properties, in terms of output
mechanical energy density, for an electroactive polymeric material.  Therefore, it has been considered as one of the
candidates that can be used in high performance, low mass actuation devices in many aerospace applications.  Various bi-
layer-based bending actuators have been designed and fabricated.  An analytic model based on beam theory in the strength of
materials has been derived for the transverse deflection, or curvature, and the longitudinal strain of the bi-layer beam.  The
curvature and strain are functions of the applied voltage and the thickness, width, and Young’s modulus of the active and
passive layers.  The model can be used to optimize the performance of electrostrictive graft elastomer-based actuators to meet
the requirements of various applications.  In this presentation, optimization and sensitivity studies are applied to the bending
performance of such actuators.
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1. INTRODUCTION

Materials that sustain mechanical displacement under controlled electrical excitation are needed as actuators for many
applications.  For aerospace applications, there is also a need for low mass, high performance, and ease of processability,
which are inherent characteristics of electroactive materials. Electroactive polymeric elastomers that show electromechanical
activity, especially large electric field induced strain, are being considered as potential candidates for such applications.
Existing materials include polyurethane elastomers [1-3] and silicone rubber [4,5].  Recently, we have demonstrated an
electrostrictive response in graft elastomers [6,7].  The elastomers offer large electric field induced strain and high
mechanical modulus.  Therefore, a high electromechanical output power, or high strain energy density is achieved.  In
addition to the high performance as a new class of electromechanically active polymeric materials, the electrostrictive graft
elastomers also offer such advantages as excellent processability and electrical and mechanical toughness.

Smart materials, such as sensor and actuator materials, are finding many applications in space technologies.  However,
lightweight, low cost, and high performance are still challenges in the development of these types of functional materials.
Recently, an electrostrictive graft elastomeric polymer was discovered at NASA Langley Research Center.  It offers large
electric field induced strain (4%).  This material can be used in many NASA space technologies that include position and
tension control of functional membranes, aerodynamic and flow control of spacecraft, and development of self-adjustable
multifunctional membranes as well as micro-electro-mechanical-systems (MEMS).  Using the material, several prototype
actuators have been developed.  It was found that the performance of the actuators using the electrostrictive graft elastomers
depends on the configuration, materials selection, and fabrication.  This work is intended to help optimize the performance of
the actuators by means of design and modeling.

2. BASIC CONFIGURATION

Figure 1 shows the basic configuration of a bending actuator that uses electrostrictive graft elastomers.  The active layer was
coated with gold electrodes on opposite sides of the graft elastomer film.  The active layer was bonded to a passive graft
elastomer layer that has no electrode coating.  The adhesive was a thin epoxy layer.  Figures 2a and 2b show the fabricated
electrostrictive graft elastomer-based bending actuator in unexcited and excited states, respectively.
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3. DERIVATION AND OPTIMIZATION OF MODEL

3.1 Derivation

We shall attempt to develop an analytic model for the transverse curvature  κ   and longitudinal strain  ε   of a two- layer,
unrestrained beam with one layer electrostrictive and the other passive.  The model is based on beam theory in the strength of
materials, as presented in  [8].  Of the two layers comprising the beam, the electrostrictive layer is layer 1 and the passive
layer is layer 2.  The unexcited model beam is shown in Figure 3.  In the unexcited state, the beam is flat and of length  L .
The height  h , width  b , and Young’s modulus  E   can be different for the two layers.   Plane cross-sections of the beam
are assumed to remain plane under flexure so that strains vary directly with their distance from the neutral axis, where the
flexural strain is zero.  Strains are assumed not to exceed the yield point.
.

Figure 1: Basic configuration of a bending actuator using the electrostrictive graft elastomers.
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Figure 2: The bending actuator in the unexcited state (a) and the excited state (b).
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For the laboratory prototype shown in Figure 2, 035.0=L  m, 6
21 1021 −×== hh m, and 3

21 1075.5 −×== bb  m.
The appropriate equations for developing this model are presented by F. L. Singer [8].  As in the treatment of thermal
stresses, the electrostrictive layer is allowed to freely strain under excitation.  To maintain longitudinal force equilibrium, the
electrostrictive layer is then brought into compression and the passive layer into tension.  The resulting longitudinal strain  ε
of the beam is given by
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where  ae   is the free strain of the electrostrictive layer, as given by
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where  1810535.1 −×=m  m2 (volt)-2  is the electrostrictive constant for the graft elastomer, and  1V   is the voltage applied

across the electrostrictive layer.  With (1b) substituted for  ae , the longitudinal strain of the beam becomes
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Figure 3:  Model of a two-layer flat beam of length  L ,
width  b , and layer thickness  h .  The longitudinal
direction lies along the y - axis, and the transverse direction
along the z - axis.
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The corresponding bending moment  M   is given by
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The beam curvature  ρκ /1= , where  ρ   is the radius of curvature that results from this moment, is given by
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where  I   is the moment of inertia about the neutral axis of the equivalent homogeneous beam having Young’s modulus

2E   everywhere.  In this equivalent homogeneous beam, width  1b   is replaced by its equivalent width  ( ) 211 /EEb .  The

neutral axis is the centroidal axis of the equivalent cross-section.  The resultant expression for  I   is given by
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and the curvature  κ   becomes
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Substituting (1b) for  ae   and dividing the numerator and denominator by  2211 bEbE   give finally
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where

22

11

bE

bE=α (5c)

This expression is a general formula for the unrestrained curvature of a two-layer beam with layer 1 electrostrictive and layer
2 passive.

3.2 Optimizations
Besides  m   and  1V , the curvature  κ   is a function of  21  , hh , and  α .  We can maximize the curvature with respect to

α   by taking  0/ =∂∂ ακ , which yields the α - optimization condition
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When this condition is met, 22 / ακ ∂∂   is negative, which confirms that  κ   is a maximum with respect to α .  Therefore,

for given values of  1h   and  2h , condition (6) gives the value of  α   that maximizes the curvature  κ .  Also, when (6) is

satisfied, the curvature  κ   is much less sensitive to small changes in  α   (small changes in  1E , 1b , 2E , or  2b ) than to

small changes in  1h   or  2h .

We can alternatively maximize the curvature  κ   with respect to  2h   by taking  0/ 2 =∂∂ hκ , which yields the  2h -
optimization condition
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This cubic equation has only one root for  2h   that is real and positive for practical values of  α
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A plot of ( )αf   versus  α   is shown in Figure 4.

Thus, for any given values of  1h   and  α , the value of  2h   that maximizes the curvature  κ   is given by (8a).
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Figure 4:  Plot of  ( )αf   versus  α , where

( )αf  is given by (8b) and  α   by (5c).
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If we attempt to maximize the curvature  κ   with respect to  1h   by taking  0/ 1 =∂∂ hκ , we find that there are no positive

real solutions for  1h .  Therefore, for given values of  2h   and  α , there is no value for  1h   that maximizes  κ .   The reason

that no optimum value for  1h   exists is clarified by plotting contours of  ln( )κ   on the  21 hh −   plane, as shown in
 Figure 5.

As  2h   increases along a vertical line, κ   increases until  2h   reaches the value given by (8a), after which  κ   decreases.  In

contrast, as  1h   decreases along a horizontal line, κ   continues to increase monotonically without leveling off to a

maximum value.  Therefore, for given values of  1h   and  α , there exists a value of  2h   that maximizes  κ ; but for given

values of  2h   and  α , one can always increase  κ   further by decreasing  1h .

4. SENSITIVITY STUDIES

At this point the model is not sufficiently close to the laboratory prototype to make a quantitative comparison.  The
laboratory prototype actually contains five layers, as shown in Figure 1.  Besides the electroactive graft elastomer layer and
the passive graft elastomer layer of the model, there is the adhesive layer between them and two metallic gold layers that coat
the electroactive layer and across which the voltage is applied.  The gold layers reduce the effective longitudinal strain of the
electroactive layer and increase the beam’s resistance to bending.  The adhesive layer also has similar effects.  Eventually we
hope to bring the model and prototype into agreement.  At present, we will only attempt to gain qualitative insights from the
model by performing sensitivity studies.

C

Figure 5:  Contour plot of  ln( )κ
on the  21 hh −   plane.  Relevant

parameters are listed in Table 1.=)ln(κ

610−×
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The sensitivity studies apply to a simplified version of the laboratory prototype where the effects on curvature of the two gold
layers and the adhesive layer are neglected.  The first study starts from a baseline state (indicated by the superscript (0)) that

is α - optimized by satisfying (6).  The applied voltage  2150
1 =V   volts, which gives a curvature to the beam of

75.50 =κ  m-1  and radius of curvature  174.00 =ρ  m.  The other baseline parameters for sensitivity study 1 are given in
Table 1.

Table 1.  α -Optimized Baseline State For Sensitivity Study 1
____________________________________________

60
2

0
1 10580×== EE  Pa

30
2

0
1 1075.5 −×== bb  m

60
2

0
1 1021 −×== hh  m

170 1055.3 −×=I  m4

180 10535.1 −×=m  m2 (volts)-2

2150
1 =V  volts

40 1061.1 −×=ae
70 1018.1 −×=M  N m

75.50 =κ  m-1

174.00 =ρ  m
50 1004.8 −×=ε

035003.00 =L  m
____________________________________________

Because the baseline longitudinal strain  0ε  due to the baseline voltage  
0

1V , as given in Table 1, is so small, the increase in

the beam length  0L   is negligible, and it remains so throughout both sensitivity studies.

In each sensitivity study, various design parameters are varied one at a time, and we calculate the effects on the unrestrained
curvature  κ   (5b) and longitudinal strain  ε   (1c), as shown in Table 2.

Table 2.  Sensitivity Study 1 For  α -Optimized Baseline State

0/ aa ee 0/ MM 0/ II 0/κκ 0/ εε

1.1/ 0 =mm 1.1 1.1 1 1.1 1.1

1.1/ 0
11 =VV 1.21 1.21 1 1.21 1.21

9./ 0
11 =hh 1.23 1.11 .86 1.30 1.17

9./ 0
22 =hh 1 .9 .86 1.05 1.05

1.1/ 0
11 =EE 1 1.05 1.05 1 1.05

9./ 0
22 =EE 1 .95 1.05 1 1.05

1.1/ 0
11 =bb 1 1.05 1.05 1 1.05

9./ 0
22 =bb 1 .95 .95 1 1.05
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From this table, we see that a 10 percent increase in the electrostrictive constant  m   results in a 10 percent increase in the
curvature  κ   and a 10 percent increase in the longitudinal strain  ε   of the beam.  The increase in  κ   results from a 10

percent increase in the bending moment   M  due to a 10 percent increase in the free strain  ae   of the active layer.  This

increase in  ae   also accounts for the increase in  ε .   In the formulas for  κ   and  ε , the voltage  1V   enters as a squared

quantity.  Therefore, a 10 percent increase in  1V   results in a 21 percent increase in the curvature  κ   and a 21 percent

increase in the longitudinal strain  ε .

A 10 percent decrease in the thickness of the active layer  1h   gives a 30 percent increase in the curvature  κ   and a 17

percent increase in  ε .  In this case, the increase in  κ   results from an 11 percent increase in the bending moment  M   and

a 14 percent decrease in the moment of inertia  I .  A 10 percent decrease in the thickness of the passive layer  2h     gives a

5 percent increase in  κ   and a 5 percent increase in  ε .  These changes result from a 10 percent decrease in  M   and a 14
percent decrease in  I .  We infer that the curvature  κ   of a beam could be tailored efficiently by varying the thickness of

the active layer  1h   along its length.  However, for the α - optimization to remain valid for large thickness changes, both
layers may need to be tailored.

Ten percent changes in Young’s moduli  1E   and  2E   or in the widths  1b   and  2b   can alter the longitudinal strain  ε   by
5 percent but have a negligible effect on the curvature  κ .  The insensitivity of   κ   to these changes confirms that

0/ =∂∂ ακ   when the α - optimization condition (6) is satisfied.

The second sensitivity study starts from a baseline state that is  2h - optimized.  According to Figure 4, when  1=α , which

corresponds to the laboratory prototype, 2/1)( =αf   and  2/12 hh = .  This value for  2h   deviates from the laboratory
prototype and from sensitivity study 1.  The baseline state for the second sensitivity study is given in Table 3, where values

that differ from the first study are indicated by arrows )(→ .  In particular, the baseline curvature  0κ   is substantially
greater in Table 3 than in Table 1.

Table 3.  2h -Optimized Baseline State For Sensitivity Study 2
____________________________________________

60
2

0
1 10580×== EE  Pa

30
2

0
1 1075.5 −×== bb  m

60
1 1021 −×=h  m

        60
2 105.10 −×=→ h  m

        170 105.1 −×=→ I  m4

180 10535.1 −×=m  m2 (volts)-2

2150
1 =V  volts

40 1061.1 −×=ae

        80 1092.5 −×=→ M  N m

        81.60 =→ κ  m-1

        147.00 =→ ρ  m

        40 1007.1 −×=→ ε
        035004.00 =→ L  m
____________________________________________
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As before, the baseline values are varied one at a time by 10 percent, and the effects on curvature  κ , longitudinal strain  ε ,
and other relevant quantities are given in Table 4.

Table 4.  Sensitivity Study 2 For  2h -Optimized Baseline State

0/ aa ee 0/ MM 0/ II 0/κκ 0/ εε

1.1/ 0 =mm 1.1 1.1 1 1.1 1.1

1.1/ 0
11 =VV 1.21 1.21 1 1.21 1.21

9./ 0
11 =hh 1.23 1.11 .81 1.37 1.19

9./ 0
22 =hh 1 .9 .9 1 1.03

9./ 0
11 =EE 1 .96 .95 1.02 .96

1.1/ 0
22 =EE 1 1.06 .95 1.02 .97

9./ 0
11 =bb 1 .96 .95 1.02 .96

1.1/ 0
22 =bb 1 1.06 1.05 1.02 .97

A 10 percent decrease in  1h   gives a 37 percent increase in  κ .  Therefore, besides greater baseline curvature, the  2h -

optimized state gives greater curvature sensitivity than the  α - optimized state.  This result could change for different

voltages, etc., and both optimizations should be considered in the design process.  As expected for the  2h -optimization, the

curvature  κ   is insensitive to small changes in  2h ; however, κ   now has gained some sensitivity to  1E  , 1b , 2E , and

2b , which was missing in the  α - optimization.

5. CONCLUDING REMARKS

Beam theory in the strength of materials was used to obtain an analytic model for the transverse curvature and longitudinal
strain of a two-layer actuator consisting of one electrostrictive layer and one passive layer.  The layers can have different
thicknesses, widths and Young’s moduli.  The curvature formula was optimized in two ways: (1) by varying the thickness of
the passive layer and (2) by varying the ratio of the product of width and Young’s modulus for both layers.  The latter
optimization was satisfied by a simplified version of the laboratory prototype.  The former optimization required halving the
thickness of the prototype’s passive layer.  Two sensitivity studies (one for each optimization) were performed with the
model.  Both studies showed that a 10 percent increase in the voltage across the electrostrictive layer gives a 21 percent
increase in the curvature.  A 10 percent decrease in the thickness of the electrostrictive layer gives a 30 percent increase in
curvature for the optimization satisfied by the laboratory prototype and a 37 percent increase for the other optimization.  The
curvature is much less sensitive to small variations in the thickness of the passive layer.  Therefore, the curvature of an
actuator beam can be tailored efficiently along its length by varying the thickness of its active layer.  However, for either
optimization to remain valid for large thickness changes, both layers may need to be varied.
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